

Challenges, drivers, and trends in technical textiles

A Technical Webinar 17 October 2022

Towards Sustainable and Circular – *Technical* – Textiles Industry in Asia

René VAN BERKEL UNIDO Representative & Head, Regional Office in India

Sustainable Production

- Finding and implementing ways to
 - Improve productive use of materials, water and energy
 - Thereby
 - Reduce the generation of waste, effluent and emission
 - Thereby
 - Improve well being of employees, consumers and community

Thereby

- Improve resource efficiency
- Minimize waste
- Improve human wellbeing

www.recpindonesia.org

→ Virtuous cycle

Targets

INCREASE		DECREASE		
Resource Productivity		Pollution Intensity		
Through		Through		
Material Productivity	Selection and	Waste Intensity	Reduction and	
	efficient use of		environmentally	
	materials, including		sound recovery,	
	chemicals		treatment and	
			disposal of waste	
Water Productivity	Selection of	Waste Water	Reduction and	
	sustainable sources	Intensity	environmentally	
	for and efficient use		sound treatment and	
	of water		disposal of waste	
			water	
Energy Productivity	Selection of sources	Emission Intensity	Reduction and	
	for and efficient use		environmentally	
	of energy		sound discharge of	
			air emissions	

Resource Efficient and Cleaner

Production

INDONESIA

RECP Practice	Description	Con	nmon Water-Related Example
Good Housekeeping	Maintain a clean, organized and productive ('neat') workplace to eliminate avoidable 'wastage'	•	Switch off what is not in use (e.g. taps) Repair what is broken or leaking (e.g. pipes) Remove dry-debris before factory wash down
Input Change	Choose inputs that are efficient, effective and/or pose minimum harm to the environment and health	•	Use secondary, recovered water Use less harmful chemical substances (dyes, detergents, etc.) Enzyme-enhanced bleaching, scouring
Better Process Control	Monitor and control processes and equipment so that they always run at highest efficiency and with lowest wastage	•	Establish and follow Standard Operating Procedures (SOP) Sub-meter use of water Install automatic shut-off and overflow prevention valves
Equipment Modification	Make existing equipment more efficient and less wasteful	•	Align and debottleneck production line Close, hot and cold, process equipment
Technology Change	Change over to new technology that is more efficient or produces less waste	•	Waterless dyeing Additive, 3D printing
On-Site Reuse & Recycling	Use previous 'waste' for similar or alternative purpose in company	•	Counter-current or cascaded use of water Condensate recovery
Production of Usefull By-Product	Convert a previous 'waste' for a useful use elsewhere	•	Provide used cooling water for external heating or cooling purposes
Product Modification	Redesign product to reduce its environmental impact during production, use and/or disposal	•	Produce easy care textiles that require minimal water by consumers
an Berkel, 2017			

RECP Textile & Garment Sector in Indonesia

Indicator	Superbtex	Argo Pantes	Saudaratex	Tiara Utama
	(spinning mill)	(integrated mill)	(garment factory)	(garment laundry)
Specific Energy	-4%	-42%	Power -20%	Power -9%
Consumption			Coal -25%	Coal -43%
Specific Water	n/a	-6%	-24%	-39%
Consumption				
Specific	n/a	-33%	-24%	-39%
Pollution/Effluent Load				
Chemical Consumption	n/a	-23%	n/a	n/a
GHG emissions	-4%	-9%	-25%	-42%
Annual cost savings	USD 47,000	USD 1.08 million	USD 538,000	USD143,00

SMART Chemicals Management

Pilot in Sri Lanka's textile, apparel, rubber and tourism sectors

Chemical Consumption

Average reduction: 40%

Energy Consumption

Average reduction: 30%

Waste Generation

Solid Waste - Average reduction: 20%

Hazardous waste - Average reduction : 40%

Industrial Accidents

Average Reduction: 90%

Water Consumption

Average Reduction: 30%

SAICM, 2018

Energy Efficiency and Renewable Energy

Concentrated Solar Thermal (CST) for Process Heating & Cooling

Silk reeling unit at Uttarakhand Cooperative Resham Federation (Dehradun)

90 Compound Parabolic Concentrators with 290.50 m² Saves 417 kg firewood use daily Investment 62.3 lakhs Payback 4.5 yrs (with FA)/8.3 yrs

Market transformation for energy efficient technologies in MSMEs

Technology	Features					
	Average	% SEC	Simple pay			
	Investment	saving	back			
	kUSD		(years)			
Surat (textile)						
1. Energy efficient screw compressor	15.0	20-25%	1.50			
2. 100% flash steam & condensate	12.5	20-25%	1.43			
recovery						
3. PLC based automation and control	2.1	15-20%	1.39			
of jet dyeing machine						
4. Automation and control system for	15.0	15-20%	1.09			
boiler						
5. Micro-turbine for power generation	43.8	15-20%	1.54			
Varanasi (carpet)						
1. Combustion control system	15	10-15%	1.01			
2. Low grade waste heat recovery	10	15-20%	2.5			
3. Automation of carrier and jet dyeing	30	20-25%	1			

Towards Circularity

RESOURCE SWITCH

USE RENEWABLES SUSTAINABLY

Maximize substitution of non-renewable resources

RESOURCE EFFICIENCY

RELENTLESSLY PRACTICE EFFICIENCY

Improve efficiency of use of all resources

RESOURCE CIRCULARITIY

RECYCLE PERPETUALLY

Value recovery from all wastes

INNOVATION

- Products & service
- Materials & technologies
- Business models

Van Berkel & Fadeeva, 2020

Through Innovation

Biodegradable sanitary pads made from waste banana fibre

Manufacturing natural bio-colours extracted from vast biodiversity of India

Cypermethrin co-extrusion in PE filament for Long Lasting Insecticidal Nets

René VAN BERKEL UNIDO Representative Regional Office in India r.vanberkel@unido.org @UNIDO_india

www.isid4india.org

www.recpnet.org

https://www.low-carbon-innovation.org/

https://www.industrialenergyaccelerator.org/

www.chemicalleasing.com

www.greenchemistry-toolkit.org